
LIS Developer’s Guide

June 8, 2010

Version 6.0

History:
Revision Summary of Changes Date
6.0 LIS6.0 public release June 8, 2010
5.0 LIS5.0 public release Jan 1, 2008
4.1 Data assimilation capability Mar 5, 2005
3.0 Milestone “G” submission May 7, 2004
2.3 LIS 2.3 code release December 19, 2003

Initial revison

National Aeronautics and Space Administration
Goddard Space Flight Center

Greenbelt, Maryland 20771

1

Contents

1 Introduction 3

2 Background 4
2.1 LIS . 4

3 Coding and Documentation Conventions 6
3.1 Coding conventions . 6
3.2 Documentation conventions . 6

4 Customizable Features in LIS 10
4.1 What is polymorphism? . 10
4.2 Polymorphism in LIS . 11

5 Generic data structures in LIS 14

6 How to add a new land surface model in LIS 16

7 How to add a new forcing scheme in LIS 19

8 Customizing LIS for data assimilation 21

9 “Use only what you need” 25
9.1 Defining source directories for compilation . 25
9.2 Defining components while building the executable . 27

2

1 Introduction

This document describes some of the interoperable features in LIS and how to use/extend them. The

following sections describe the general development and documentation practices recommended for using and

extending LIS software, followed by the guidelines for using the extensible features in LIS for customization

and improved functionality.

3

2 Background

This section provides some general information about the LIS project and land surface modeling.

2.1 LIS

Land surface models provide characterizations of the water and energy exchanges and biogeochemical pro-

cesses of the soil-vegetation-snowpack medium. A realistic representation of these processes is critical for

improving the understanding of the boundary layer and land-atmosphere interactions. The development

of LIS has been motivated by the need to develop an infrastructure that combines the use of land surface

simulation, available observations and the required computing tools for accurate land surface prediction. As

discussed in [6], LIS integrates and extends the capabilities of Land Data Assimilation Systems (LDASs)

such as the 25km Global Land Data Assimilation System (GLDAS) and the 12.5km North American Land

Data Assimilation System (NLDAS). LIS is primarily an infrastructure for operating an ensemble of land

surface models with capabilities for data integration and assimilation, over user-specified regional or global

domains. The new phase in LIS development is to extend its capabilities by linking with other earth system

components, enabling coupled systems that can model land-atmosphere interactions more effectively.

LIS is designed using advanced software engineering principles, and features a highly modular, flexible,

object oriented, component-based framework. Figure 1 shows the software architecture of LIS. The core of the

system consists of structures to manage generic utilities such as time, configuration, geospatial transforma-

tions, I/O, parallel computing constructs, logging, etc. These structures provide generic, model-independent

support for high performance computing, resource management, data and I/O handling, and other functions.

The LIS core controls the overall program execution and manages the inclusion of user-defined extensible

components through several related abstractions. These abstractions, shown in the middle layer, include

generic representations of land surface models, data assimilation schemes, meteorological forcing schemes,

domains, running modes etc. The specific user defined components extend these abstractions. For example,

Figure 1 shows a number of land surface models (Noah, CLM, HySSIB, Catchment) implemented in LIS

through the land surface model abstraction. By providing a structure that allows the reuse and community

sharing of modeling tools, LIS allows rapid prototyping and development of new applications. These interop-

erable features in LIS has enabled the incorporation of a growing suite of community LSMs, meteorological

forcing analyses, different sources of land surface parameters, and data assimilation schemes. The system

also allows for the plug and play of various user-defined components and has enabled several intercomparison

studies involving land surface models, parameters, and assimilation schemes.

Please refer to [6, 5, 7] for details on the design of LIS. This document provides instructions on the use

of the “plug-and-play” features or abstractions in LIS.

4

LIS core

High

Performance
Computing

Time

Management
tools

Geospatial

transformation
tools

Logging and

Diagnostic
tools

Configuration
tools

I/O

management
tools

Land Surface
Model

Meteorological
Inputs

Land Surface
Parameters

Domains
Running

Mode

ECMWF NLDAS

AGRMET CMORPH

CMAP TRMM

GEOS GDAS
Analysis

Forecast

Coupled

Catchment

Noah

CLM

HySSIB

Lat/Lon

Polar
Stereographic

Lambert

Mercator

Topography

Landcover

Soils

Snow

Albedo

LAI

A
bs

tra
ct
io

ns

S
am

pl
e

us
e

ca
se

im

pl
em

en
ta

tio
ns

C

or
e

st
ru

ct
ur

e
an

d
fe

at
ur

es

Data
Assimilation

Direct
Insertion

EnKF

EKF

Figure 1: Software architecture of the LIS framework

5

3 Coding and Documentation Conventions

This section describes some of the coding and documentation conventions [1] that are helpful for developers

of LIS.

3.1 Coding conventions

LIS is implemented using the Fortran 90 and C programming languages. Since different Fortran compilers

parse source files differently depending on the file extension (such as .f, .f77, .F, .f90, and .F90) the task of

porting code to different platforms is a difficult process. Therefore, Fortran additions and contributions to

LIS code are expected to be written using the Fortran 90, and the sources files must have an F90 extension.

Some of the style guidelines followed in LIS are as follows:

• Preprocessor: C preprocessor (cpp) is used wherever the use of a language preprocessor is required.

The Fortran compiler is assumed to have the ability to run the preprocessor as part of the compilation

process. The preprocessing tokens are written in uppercase to distinguish them from the Fortran code.

• Loops: All loops in Fortran are structured using do-enddo constructs as opposed to numbered loops.

• Indentation: Code with nested if blocks and do loops are expected to be indented for readability.

• Modules: Modules must be named the same as the file in which they reside. This is enforced due to

the fact that make programs build dependencies based on file names.

• Implicit none: All variables in different modules should be explicitly typed, and this should be enforced

by the use of the “implicit none” statement.

3.2 Documentation conventions

LIS uses an in-line documentation system that allows users to create both web-browsable (html) and print-

friendly(ps/pdf) documentation. Each function, subroutine, or module includes a prologue instrumented

for use with the ProTex auto-documentation script [2]. The following examples describe the documentation

templates used in LIS.

6

Templates for routines that are not internal to modules.

!BOP

!

! !ROUTINE:

!

! !INTERFACE:

!

! !USES:

!

! !INPUT PARAMETERS:

!

! !OUTPUT PARAMETERS:

!

! !DESCRIPTION:

!

! !BUGS:

!

! !SEE ALSO:

!

! !SYSTEM ROUTINES:

!

! !FILES USED:

!

! !REVISION HISTORY:

!

! 27Jun02 Username Initial specification

!

!EOP

!---

7

Template for a module :

!BOP

!

! !MODULE:

!

! !PUBLIC TYPES:

!

! !PUBLIC MEMBER FUNCTIONS:

!

! !PUBLIC DATA MEMBERS:

!

! !DESCRIPTION:

!

! !REVISION HISTORY:

!

! 27Jun02 Username Initial specification

!

!EOP

8

Template for a C file:

//BOP

//

// !ROUTINE:

//

// !INTERFACE:

//

// !USES:

//

// !INPUT PARAMETERS:

//

// !OUTPUT PARAMETERS:

//

// !DESCRIPTION:

//

// !BUGS:

//

// !SEE ALSO:

//

// !SYSTEM ROUTINES:

//

// !FILES USED:

//

// !REVISION HISTORY:

//

// 27Jun02 Username Initial specification

//

//EOP

//---

9

4 Customizable Features in LIS

The LIS core is designed with extensible interfaces for facilitating easy incorporation of new features into

LIS. The LIS core uses advanced features of the Fortran 90 programming language, which are especially

suitable for object oriented programming. The object oriented style of design adopted in LIS enables the

core to provide well defined interfaces or “plug points” for enabling rapid prototyping and development of

new features and applications into LIS.

The LIS core includes a number of abstractions including:

• land surface model: Interfaces for adding new land surface models.

• base forcing: Interfaces for adding new model forcing schemes.

• supplemental forcing: Interfaces for adding supplemental forcing products.

• data assimilation: Interfaces for specifying assimilation of observational data using data assimilation

algorithms.

The actual implementation of a component uses these abstractions following the concept of polymorphism.

4.1 What is polymorphism?

The modules in LIS are constructed using a component-based design, with each module/component designed

to abstract the behavior of a certain program segment. The interfaces are designed to emulate the concept

of polymorphism from the object oriented software design world. As the definition of the word implies,

polymorphism is the state of being able to assume different forms. A polymorphic method is typically

defined with minimal and common functionality, and specific implementations of the methods override the

polymorphic method. Figure 2 shows an example of polymorphic behaviour in the real world. A car class

is a polymorphic module, and sports car and van are specific instances of the abstract, car class. The car

class might contain a move method, which could be overwritten with a different behaviour in the sports car

and van classes. In object oriented programming, the move method is always invoked on the polymorphic

class (car), and depending on the specific instance used in the simulation, the move call will be delegated

to the move call of the sports car or the move call of the van class.

Unfortunately, true polymorphism and the automatic delegation of the polymorphic methods to the

specific instances are true object oriented features. Since Fortran 90 is not an object oriented language,

polymorphism can only be simulated only in software. This is achieved by the use of virtual function

tables. The virtual function tables maintain a list of specific instances of each polymorphic method. Since

Fortran is not an object oriented language, the task of adding the functions or “registering” the functions

10

car

sports car van

Figure 2: Example of polymorphic behaviour

into the virtual function tables needs to be performed to simulate polymorphism. The C language allows

the capability to store functions, table them, and pass them as arguments. The Fortran 90 programming

language allows passing of functions as arguments. By combining these features of both languages, LIS uses

a complete set of operations with function pointers.

4.2 Polymorphism in LIS

Polymorphism is simulated in LIS using virtual function tables and the actual delegation of the calls are

done at run-time by resolving the function names from the table. Figure 3 illustrates how the function tables

work. A function is stored in the table typically by a register function, that simply stores the pointer to

the function at the specified index. The call register(1,f1) stores the function f1 into the function table

with an index of 1 and the call call register(2,f2) stores the function f2 into the function table with with

an index of 2. When the function needs to be accessed, a generic call is made which resolves into a specific

call depending on the index specified. In this case, the call retrieve(1) invokes the method f1 from the table

and the call call retrieve(2) invokes the method f2. This implementation helps in defining generic calls in

programs. In the following, “registry” is used to refer to a function table.

In the LIS architecture, the customizable features listed in section 4 are implemented using the virtual

function tables. For each customizable feature, abstract interfaces are provided by LIS, with the specific

implementations and the addition to the corresponding registry left to the user. Once the functions are

implemented and added to the registry, the appropriate delegation and linkages of the calls are handled by

the LIS core software. Further, when a new feature is implemented in LIS, the user does not necessarily

have to be familiar with the implementation details of the rest of the software. This feature enables rapid

prototyping and testing of new applications into LIS.

11

1 f1()

Function Table

Index Function

2 f2()

. .
 .

.

. .
 .

.

Register step

call register(1,f1)
call register(2,f2)

Retrieval step

call retrieve (1)

call retrieve (2)

returns f1()

returns f2()

Figure 3: Example of a function table implementation

The LIS 6.0 source code contains a number of sub directories, which are organized as components. The

top-level organization of the source (src) is listed in Table 1. (See LIS’ User’s Guide for a comprehensive

description of LIS’ source organization.) The plugins directory contains modules where the registries for

each polymorphic method are defined.

12

Directory Name Synopsis

arch Directory containing the configurable options for building the LIS executable

baseforcing Top level directory for base meteorological forcing methods

configs some sample LIS configuration files

core core routines in LIS

dataassim Top level directory for data assimilation support

domains Directory containing the domains of various map projections / custom grids

interp Generic spatial and temporal interpolation routines

lib External libraries supplied with the LIS source code

lsms Directory containing implementations of various land surface models

make Makefile and needed header files for building LIS executable

offline Contains the main program for the offline mode of operation

optUE Top level directory for optimization support

paramestim Top level directory for parameter estimation support

params Directory containing implementations of various land surface model parameters

plugins Modules defining the function table registry of extensible functionalities

rtms Directory containing coupling routines to various radiative transfer models

runmodes Directory containing the various running modes in LIS

suppforcing Directory containing the various supplemental forcing implementations

testcases testcases for verifying various functionalities

utils Miscellaneous helpful utilities

Table 1: Top-level directory structure of LIS source code

13

5 Generic data structures in LIS

In LIS, the land surface model executions are defined on a fundamental unit called ‘tile’. Each of these tiles

can be mapped to a grid point on the modeling domain. LIS also supports nesting or concurrent execution

on multiple domains. Each of these nests consists of a number of model tiles. The following are the key LIS

variables that are related to the model execution space:

LIS rc%nch(n) Number of tiles, for each processor, for the nest n

LIS rc%glbnch(n) Number of tiles for the whole domain, for the nest n

LIS rc%ngrid(n) Number of grid points, for each processor, for the nest n

LIS rc%glbngrid(n) Number of grid points for the whole domain, for the nest n

LIS rc%lnc(n) Number of columns in the domain, for each processor, for the nest n

LIS rc%lnr(n) Number of rows in the domain, for each processor, for the nest n

LIS rc%gnc(n) Number of columns in the domain, for the whole domain, for the nest n

LIS rc%gnr(n) Number of rows in the domain, for the whole domain, for the nest n

Note that when a single processor is used, the LIS rc%nch(n), LIS rc%ngrid(n), LIS rc%lnc(n) and

LIS rc%lnr(n) will be exactly equal to LIS rc%glbnch(n), LIS rc%glbngrid(n), LIS rc%gnc(n) and LIS rc%gnr(n),

respectively. Further, when no subgrid-tiling is used, the tile space and grid space are exactly equivalent

(LIS rc%nch(n) equals LIS rc%ngrid(n)). These indices also represent the grid and tile space domain

decomposition.

LIS domain(n)%gindex defines the mapping between the grid location and the tile index.

tileindex = LIS_domain(n)%gindex(col,row)

where col and row are the column and row index of the grid point and tileindex defines the index of the

tile.

The src/core directory contains a number of modules that provides variables that may be required while

defining land surface model specific routines. Some of the useful modules and the variables provided by them

are listed below. For more details, please refer to the source code documentation.

14

Module name Provides

LIS timeMgrMod Variables and routines for time management

LIS coreMod LIS domain: representations of lis domain

including tiles, grids and 2D mappings

LIS config: overall runtime configuration

LIS rc: representation of overall simulation

control

LIS coreMod Variables and routines that define domain

decomposition

LIS constantsMod specification of global constants

LIS gribMod grib support implementations

LIS historyMod generic routines for parallel I/O

15

6 How to add a new land surface model in LIS

The plugins directory contains the LIS lsm pluginMod module that can be used to customize and define land

surface models in LIS. The LIS lsm pluginMod contains a LIS lsm plugin method that defines a number or

registries to capture the basic offline operations of a land surface model. The registries can be used to define

functions to perform the following tasks:

• initialization:

Definition of land surface model variables, allocation of memory, reading run-time parameters, etc.

• setup:

Initialization of land surface model parameters.

• dynamic setup:

Routine to initialize or update time dependent parameters.

• run:

Routine to execute land surface model for a single timestep.

• write restart:

Routine to write restart files

• read restart:

Routine to read restart files

• output:

Routine to write output

• transfer of forcing data to model tiles:

Routine that provides an array of forcing variables for each gridcell.

• Finalize:

Routine that cleanups any allocated memory structures

A new LSM (lets say Noah) must implement each of the above 8 methods for successful incorporation in

LIS.

The following example shows how the registry functions are defined for the Noah LSM.

call registerlsmini(LIS_noah271Id,noah271_lsm_ini)

call registerlsmsetup(LIS_noah271Id,noah271_setup)

16

call registerlsmdynsetup(LIS_noah271Id,noah271_dynsetup)

call registerlsmf2t(LIS_noah271Id,LIS_retroId,noah271_f2t)

call registerlsmrun(LIS_noah271Id,noah271_main)

call registerlsmrestart(LIS_noah271Id,noah271rst)

call registerlsmoutput(LIS_noah271Id,noah271_output)

call registerlsmwrst(LIS_noah271Id,noah271_writerst)

call registerlsmfinalize(LIS_noah271Id,noah271_finalize)

The LIS noah271Id refers to the integer index assigned to Noah. The file LIS pluginIndices.F90 defines

the conventions used in LIS. Please note that these can be modified by the user if a different convention is

to be followed.

The registry functions defined for noah are:

noa271 lsm ini Initialization for Noah

noah271 setup Sets up Noah’s parameters

noah271 dynsetup Sets up Noah’s time dependant parameters

noah271 main Runs the Noah model on the model tiles for a single timestep

noah271rst Reads the Noah restart files

noah271 output Writes output of Noah runs

noah271 writerestart Writes Noah’s restart files

noah271 f2t Transfers forcing data to Noah model tiles

noah271 finalize Cleanups up allocated memory structures
The first step is to organize the LSM code so that the actual model physics can be isolated to the execution

on a single model tile, for a single timestep. The subroutine SFLX in Noah represents such a routine. The

call to the model physics should be defined in noah271 main as follows:

do t=1,LIS_rc%nch(n)

call SFLX (<arguments>)

enddo

Since the model prognostic variables, input parameters, and diagnostic outputs need to be accessed for ini-

tialization, output, model restart and other functions, they are defined as module variables in noah271 module,

which represents the variable definition for a single model tile. In the initialization routine (noah271 lsm ini

the memory structures are allocated as shown below (similar to the LIS structure, memory for the nests are

allocated and then memory for model tiles are allocated). Finally the readnoah271crd call reads the run-

time specifications that are specific to Noah LSM. These config options specifies variables such as locations

of land surface model specific parameter files, output writing intervals, initial conditions, etc. The routine

to read these variables is typically done during initialization of the land surface model.

17

allocate(noah271_struc(LIS_rc%nnest))

call readnoah271crd()

do n=1,LIS_rc%nnest

allocate(noah271_struc(n)%noah(LIS_rc%nch(n)))

enddo

The noah271 setup routine is used to define the land surface parameters used in Noah. These include pa-

rameters related to vegetation and soils. noah271 dynsetup performs a similar function, to setup parameters

that are time-dependent. These include the use of monthly greenness and quarterly albedo climatologies.

noah271rst and noah271 writerst are restart reading and writing routines for Noah, respectively. These

subroutines read and write the list of prognostic variables for Noah to a file, so that the model can be

restarted from such a file. The variables are written out in tilespace, using the generic routines specified in

LIS historyMod file.

The noah271 output routine writes a diagnostic output file (in binary/grib/netcdf) format. The variables

written out conform to the Assistance for Land Modeling Activities (ALMA; [3])) standard.

noah271 f2t is a routine that translates the input forcing to the actual Noah model tiles. The forcing

variables processed by LIS are in tile space so that the translation is a 1-to-1 mapping.

Finally the noah271 finalize is a cleanup routine that cleanly deallocates the memory structures allo-

cated specific to Noah.

This set of routines completes the incorporation of Noah LSM in LIS. A number of LSMs are implemented

in LIS using this plugin style.

18

7 How to add a new forcing scheme in LIS

The boundary conditions describing the (upper) atmospheric fluxes are known as “forcings”. LIS makes

use of model derived data as well as satellite and ground-based observational data as forcings. The land

surface models are typically run using model derived data. The observational data are used to overwrite

the model derived data, whenever they are available. In LIS, a scheme that includes a complete set of

variables defined globally and defined in the ALMA forcing data convention can be used as a “baseforcing”.

A scheme/product that is defined regionally or that includes only a subset of the ALMA forcing convention

should be implemented as a supplemental forcing.

The plugins directory contains modules LIS baseforcing pluginMod and LIS suppforcing pluginMod that

can be used to customize and define base forcing schemes and supplemental forcing schemes, respectively.

These modules provide the plugin routines LIS baseforcing plugin, and LIS suppforcing plugin, respectively.

LIS baseforcing pluginMod and LIS suppforcing pluginMod provides registries to define functions to per-

form the following tasks.

• definition of native domain:

Routines to define the native domain of the forcing data, read run-time specific parameters through a

namelist, etc.

• retrieval of forcing data:

Routines to retrieve the forcing data, and interpolate them.

• temporal interpolation:

Routines to interpolate data temporally.

• finalize:

Routines to cleanup

The following code segment shows how a baseforcing scheme is included in LIS.

call registerdefinenative(LIS_gdasId,defineNativeGDAS)

call registerget(LIS_gdasId,getgdas)

call registertimeinterp(LIS_gdasId,time_interp_gdas)

call registerforcingfinal(LIS_gdasId,gdasforcing_finalize)

Similar to the case in LIS lsm pluginMod, the indices used in the registries need to be the same for a

particular scheme. The LIS gdasId is defined in the file LIS pluginIndices.F90.

19

The input forcing has to be spatially and temporally interpolated to the LIS grid and the timestep used

for LSM simulations. For computational performance considerations, spatial interpolation is an expensive

operation, primarily because of the computation of interpolation weights. As a result, spatial interpolation

is broken up into two steps: (1) computation of interpolation weights and (2) actual spatial interpolation.

The defineNativeGDAS routine performs two main functions: (1) to allocate the required memory struc-

tures and read runtime configurable options, and (2) to setup the interpolation weights required for interpo-

lating the input forcing to the LIS grid.

The getgdas routine reads the input forcing data based on the model clock time and interpolates it to

the LIS model grid, using the interpolation weights defined in the defineNativeGDAS. A number of generic

interpolation algorithms (bilinear, conservative, and neighbor) are provided in the src/core directory.

The time interp gdas routine temporally disaggregates the spatially interpolated forcing data to the

model timestep. This step includes the interpolation of forcing data between two or three forcing data

intervals. The disaggregation is typically a weighted average. For downward shortwave radiation, a zenith

angle-based disaggregation is typically performed.

Finally the gdasforcing finalize specifies the cleanup or deallocation of allocated memory structures

specific to GDAS forcing.

20

8 Customizing LIS for data assimilation

The emphasis of land surface data assimilation is to ingest remotely-sensed observations such as temperature,

soil moisture, and snow to adjust the model representation which is most consistent with the observations.

The data assimilation plugins in LIS are designed to support the use and implementation of different se-

quential algorithms in land surface model simulations.

The generic data assimilation plugin in LIS is enabled by the combination of a number of abstractions.

There are many different data assimilation algorithms (direct insertion (DI), extended kalman filter (EKF),

etc.) that can be employed. The chosen algorithm is used to update the relevant state variable(s) of the

land surface model being employed. Finally, the observational data used in assimilation can be obtained

from many different sources. Figure 4 shows the interactions of these three abstractions. LIS core enables

the integrated use of these abstractions through explicitly defined interfaces. All data exchanges between

the data assimilation components are enabled using the constructs provided by the Earth System Modeling

Framework (ESMF; [4]). ESMF provides a standardized, self-describing format for data exchange between

model components through the ESMF−State datatype. The three abstractions shown in Figure 4 exchange

information with each other using ESMF−State objects.

LIS CORE

 Land Surface
Models

Noah
CLM

Catchment
....

Data Assimilation
Algorithms

DI
EnKF

....

Observations

Soil Moisture
Snow

Temperature
........

Figure 4: Data assimilation abstractions and their interactions in LIS

21

The sequential data assimilation techniques typically involve updating the estimate of the system state

at each observation time, based on the measurements up to this time. The overall process can be represented

using a number of equations, as described in this section. Using the notation used in [8], the nonlinear land

surface is represented in the generic form

xk+1 = fk(xk) + wk (1)

where xk represents the state vector at time k, f(.) is the nonlinear operator, and wk represents the uncer-

tainties due to errors in the model formulation and boundary conditions. The observations at time k denoted

by yk is connected to the system states by the equation

yk = Hk(xk) + vk (2)

where the operator Hk translates the system states to the measurement variables. Measurement errors are

represented in the term vk. The noises in wk and vk are typically assumed to be independent random

vectors with mean zero and covariances Qk and Rk, respectively. The difference between the predicted

observation vector and the measurement vector (yk −Hk(xk)) known as the ’innovations vector’ is used to

make a correction to the system states to generate an improved state estimate xk+1, known as the analysis,

represented by:

xk+1 = xk + K(yk −Hk(xk) + vk) (3)

where K represents the “gain matrix”, which is chosen to ensure that analysis states converge to the true

states of the system over time. The model is then evolved forward again from the analysis states to the next

time where an observation is available and the process is repeated.

In order to define a custom data assimilation instance, a number of routines need to be specified in three

different registries: (1) LIS dataassim plugin in LIS dataassim pluginMod that specifies the algorithm for

data assimilation, (2) LIS DAobs plugin in LIS DAobs pluginMod that specifies the observation for data

assimilation and (3) LIS lsmda plugin in LIS lsmda pluginMod that specifies the LSM related interfaces for

data assimilation.

LIS dataassim plugin defines the following registries:

• Init:

Defines routines for initializing memory structures and other initializations.

• Assimilate/Update:

Method that provides the assimilation/update algorithm.

• Output:

Method to write data assimilation diagnostics to a file

22

• Finalize:

Method to cleanup allocated memory structures

These methods are registered using a single index for the assimilation algorithm that corresponds to the

implementation.

The data assimilation algorithm implementations interact with the land surface models during the process

of modifying and updating the state variables. The interaction is dependent on the land surface model and

the state variable being updated. To facilitate this interaction, LIS provides a number of plugin interfaces in

the LIS lsmda pluginMod. These interfaces are abstractions of the querying and updating operations needed

to enable interaction with land surface models. Each land surface model used for data assimilation needs to

extend these querying and updating interfaces, in addition to the interfaces pertaining to the basic operation

of a land surface model described in section 6. A list of the required interfaces for each LSM are listed below.

• get state variables method to package the list of prognostic variables into an ESMF State.

• set state variables method to translate the given ESMF state and update the prognostic state variables.

• QC LSM state method to QC a given ESMF state (check bounds, physical consistency, etc)

• define “obspred” method to that defines the “obspred”, which is the model’s prediction of what the

observations should be.

• Scale LSM state method to scale the LSM variables, if needed, so that the matrices used in an algorithm

such an EnKF are well formed.

• descale LSM state opposite of the scaling method, to convert variables back to the original space.

• update LSM state This routine specifies how the analysis increments are to be applies. The routine

provides flexibility in applying the increments to the selective list of variables.

These methods are registered using two indices. 1. index for the land surface model and 2. “Assimilation

set”, which refers to a combination of observation and the variables being updated. For example, AMSR-E

soil moisture observation to update Noah LSM variables, AMSR-E soil moisture observations to update

Catchment LSM variables and MODIS snowcover observations to update Noah LSM variables constitute

different assimilation sets.

Another generalization associated with the data assimilation operations is related to the handling of the

observational data. The generic plugins implemented in LIS for this are designed similar to the handling of

other (parameter, forcing) datasets.

The method LIS DAobs plugin defined in LIS DAobs pluginMod defines the registries for the functions

related to observation handling. LIS DAobs plugin defines the following registries:

23

• Setup:

Defines routines for initializing memory structures and other initializations.

• Reading method:

Method that reads the observation data and packages it into an ESMF state

• Get number of selected observations:

Returns the number of selected observations to be used for a single grid point.

These methods are registered using a single index for the assimilation set that corresponds to the method.

24

9 “Use only what you need”

A key advantage of the use of function tables for simulating polymorphism is the ability to use only the

components that are needed. The “plug and play” of different components allows LIS to remain flexible,

rather than evolve into a monolithic software when new components and features are added. This section

describes how to compile and use only the needed components.

9.1 Defining source directories for compilation

A file called Filepath in the src/make directory specifies all the source files that will be included during

compilation. A sample Filepath is shown below.

../core

../plugins

../domains/latlon

../domains/gaussian

../domains/polar

../domains/lambert

../domains/merc

../domains/catchment

../domains/gaussian

../domains/gswp

../domains/UTM

../runmodes/retrospective

../runmodes/wrf_cpl_noesmf_mode

../runmodes/wrf_cpl_esmf_mode

../runmodes/gce_cpl_mode

../runmodes/optUE

../params/albedo

../params/topo

../params/gfrac/AVHRRClimo

../params/gfrac/GFSClimo

../params/gfrac/NESDISWeekly

../params/lai

../params/soils

../params/landcover

25

../params/tbot

../interp

../baseforcing/template

../baseforcing/gdas

../baseforcing/geos

../baseforcing/ecmwfreanal

../baseforcing/ecmwf

../baseforcing/gswp

../baseforcing/gswp1

../baseforcing/princeton

../baseforcing/rhone

../baseforcing/gfs

../baseforcing/merra

../suppforcing/nldas

../suppforcing/nldas2

../suppforcing/saldas

../suppforcing/stg2

../suppforcing/stg4

../suppforcing/cmap

../suppforcing/agrradps

../suppforcing/3B42RT

../suppforcing/3B42V6

../suppforcing/cmorph

../suppforcing/ceop

../suppforcing/scan

../suppforcing/arms

../suppforcing/gdasLSWG

../lsms/template

../lsms/hyssib

../lsms/SiB2

../lsms/noah.2.7.1

../lsms/noah.2.7.1/da_soilm

../lsms/noah.2.7.1/cpl_wrf_esmf

../lsms/noah.2.7.1/cpl_wrf_noesmf

26

../lsms/noah.2.7.1/cpl_gce

../lsms/clm2

../lsms/clm2/main

../lsms/clm2/biogeophys

../lsms/clm2/csm_share

../lsms/clm2/ecosysdyn

../lsms/clm2/cpl_wrf_noesmf

../lsms/mosaic

../lsms/catchment

../dataassim/perturb/static

../dataassim/perturb/gmaopert

../dataassim/algorithm/di

../dataassim/algorithm/gmaoenkf

../dataassim/obs/syntheticsm1

../dataassim/obs/syntheticsm2

../dataassim/obs/syntheticswe1

../dataassim/obs/AMSREsm_hdf

../dataassim/obs/NESDIS_AMSREsm

../dataassim/obs/NASA_AMSREsm

9.2 Defining components while building the executable

As described in the previous sections, the specific instances of each customizable interface in LIS are defined

in different registries. Once the user specifies the components to be used in these interfaces, the Filepath

directory can be modified to include only these components. For example, if a user is interested in running

only one land surface model (say Noah) and does not want to keep and compile other land surface models,

the Filepath can be modified to indicate that only Noah needs to be compiled as follows (Note that the

template, hysibb, SiB2, clm2, mosaic, and catchment directories have been excluded):

../core

../plugins

../domains/latlon

../domains/gaussian

../domains/polar

../domains/lambert

../domains/merc

27

../domains/catchment

../domains/gaussian

../domains/gswp

../domains/UTM

../runmodes/retrospective

../runmodes/wrf_cpl_noesmf_mode

../runmodes/wrf_cpl_esmf_mode

../runmodes/gce_cpl_mode

../runmodes/optUE

../params/albedo

../params/topo

../params/gfrac/AVHRRClimo

../params/gfrac/GFSClimo

../params/gfrac/NESDISWeekly

../params/lai

../params/soils

../params/landcover

../params/tbot

../interp

../baseforcing/template

../baseforcing/gdas

../baseforcing/geos

../baseforcing/ecmwfreanal

../baseforcing/ecmwf

../baseforcing/gswp

../baseforcing/gswp1

../baseforcing/princeton

../baseforcing/rhone

../baseforcing/gfs

../baseforcing/merra

../suppforcing/nldas

../suppforcing/nldas2

../suppforcing/saldas

../suppforcing/stg2

28

../suppforcing/stg4

../suppforcing/cmap

../suppforcing/agrradps

../suppforcing/3B42RT

../suppforcing/3B42V6

../suppforcing/cmorph

../suppforcing/ceop

../suppforcing/scan

../suppforcing/arms

../suppforcing/gdasLSWG

../lsms/noah.2.7.1

../lsms/noah.2.7.1/da_soilm

../lsms/noah.2.7.1/cpl_wrf_esmf

../lsms/noah.2.7.1/cpl_wrf_noesmf

../lsms/noah.2.7.1/cpl_gce

../dataassim/perturb/static

../dataassim/perturb/gmaopert

../dataassim/algorithm/di

../dataassim/algorithm/gmaoenkf

../dataassim/obs/syntheticsm1

../dataassim/obs/syntheticsm2

../dataassim/obs/syntheticswe1

../dataassim/obs/AMSREsm_hdf

../dataassim/obs/NESDIS_AMSREsm

../dataassim/obs/NASA_AMSREsm

Correspondingly, the LIS lsm plugin method in src/plugins/LIS lsm pluginMod.F90 needs to be defined as

(excluding other land models from the registry):

subroutine LIS_lsm_plugin

use LIS_pluginIndices

use noah271_lsmMod, only : noah271_lsm_ini

external noah271_main

external noah271_setup

external noah271rst

29

external noah271_dynsetup

external noah271_output

external noah271_f2t

external noah271_writerst

external noah271_finalize

call registerlsmini(LIS_noah271Id,noah271_lsm_ini)

call registerlsmsetup(LIS_noah271Id,noah271_setup)

call registerlsmf2t(LIS_noah271Id,LIS_retroId,noah271_f2t)

call registerlsmf2t(LIS_noah271Id,LIS_agrmetrunId,noah271_f2t)

call registerlsmrun(LIS_noah271Id,noah271_main)

call registerlsmrestart(LIS_noah271Id,noah271rst)

call registerlsmdynsetup(LIS_noah271Id,noah271_dynsetup)

call registerlsmoutput(LIS_noah271Id,noah271_output)

call registerlsmwrst(LIS_noah271Id,noah271_writerst)

call registerlsmfinalize(LIS_noah271Id,noah271_finalize)

end subroutine LIS_lsm_plugin

Similarly, different combinations of using the components can be implemented defining the registries

appropriately and specifying the corresponding source files in the Filepath file.

30

References

[1] Community climate system model, software developers guide. http://www.ccsm.ucar.edu/csm/working−groups/Software/dev−guide/dev−guide/.

[2] Protex documentation system. http://gmao.gsfc.nasa.gov/software/protex.

[3] ALMA. http://www.lmd.jussieu.fr/ALMA/.

[4] ESMF. http://esmf.ucar.edu.

[5] S.V. Kumar, C.D. Peters-Lidard, J.L. Eastman, and W.-K. Tao. An integrated high resolution hydrom-

eteorological modeling testbed using lis and wrf. Environmental Modeling and Software, 23:169–181,

2007.

[6] S.V. Kumar, C.D. Peters-Lidard, Y. Tian, P.R. Houser, J. Geiger, S. Olden, L. Lighty, B. Doty,

P. Dirmeyer, J. Adams, K. Mitchell, E.F. Wood, and J. Sheffield. Land information system - an in-

teroperable framework for high resolution land surface modeling. Environmental Modeling Software,

3(3):157–165, 2006.

[7] S.V. Kumar, R.H. Reichle, C.D. Peters-Lidard, R.D. Koster, X. Zhan, W.T. Crow, J.B. Eylander, and

P.R. Houser. A land surface data assimilation framework using that land information system: Description

and applicatins. Advances in Water Resources, page in print, 2008.

[8] R. H. Reichle, J. P. Walker, R. D. Koster, and P. R. Houser. Extended versus ensemble kalman filtering

for land data assimilation. Journal of Hydrometeorology, 3(6):728–740, 2002.

31

	Introduction
	Background
	LIS

	Coding and Documentation Conventions
	Coding conventions
	Documentation conventions

	Customizable Features in LIS
	What is polymorphism?
	Polymorphism in LIS

	Generic data structures in LIS
	How to add a new land surface model in LIS
	How to add a new forcing scheme in LIS
	Customizing LIS for data assimilation
	``Use only what you need''
	Defining source directories for compilation
	Defining components while building the executable

